
PDF export of the original HTML instructions

3rd Party API for Sennheiser

Products

v4.3 | 07/2025

Contents

1. Preface.. 3

2. Release Notes..4

3. Sennheiser Sound Control Protocol... 5

Sennheiser Sound Control Protocol v2 (SSCv2)..6

Sennheiser Sound Control Protocol v1... 32

4. Open API.. 33

Evolution Wireless Digital (EW-DX).. 33

EW-DX Open API 1.7..33

TeamConnect Bar (TC Bar S/M)... 34

Known Issues..34

TC Bar Open API 1.11... 35

TeamConnect Ceiling Medium (TCC M)...36

TCC M Open API 1.7.. 36

Subscription for real-time updates..37

MobileConnect... 39

MobileConnect Open API..

https://docs.sennheiser-connect.com/mobile-connect-api/index.html
https://docs.sennheiser-connect.com/mobile-connect-api/index.html
https://docs.sennheiser-connect.com/mobile-connect-api/index.html
https://docs.sennheiser-connect.com/mobile-connect-api/index.html

3rd Party API for Sennheiser Products

1. Preface

PDF export of the original HTML instructions

This PDF document is an automated export of an interactive set of HTML instructions.

It may be the case that not all contents and interactive elements are contained in the

PDF as they cannot be presented in this format. Furthermore, automatically generated

page breaks may cause coherent contents to be moved slightly. We can therefore only

guarantee the completeness of the information in the HTML instructions, and recommend

that you use these. You can find these in the download section of the website under

www.sennheiser.com/download.

3

https://www.sennheiser.com/download

3rd Party API for Sennheiser Products

2. Release Notes

Latest release information on the firmware and OpenAPI versions.

New Release

• 25-07-08 | The first EW-DX Open API 1.7 is available.

Previous Releases

• 25-06-02 | New openapi version 1.11 for TC Bar S/M is available (see TC Bar Open API

1.11).

• 25-02-21 | New version of the SSC Protocol for Evolution Wireless Digital devices

available (see Sennheiser Sound Control Protocol v1).

• 24-08-15 | New Open API version 1.7 for TCC M is available.

• 24-07-03 | The first TC Bar Open API 1.11 is available.

• 23-07-01 | The TCC M firmware version 1.2.x is supporting the API 1.6.

• 22-05-05 | MobileConnect now provides plug-ins for Crestron and Extron 3rd party

integrations, based on the MobileConnect API.

4

https://docs.sennheiser-connect.com/mobile-connect-api/index.html
https://docs.sennheiser-connect.com/mobile-connect-api/index.html

3rd Party API for Sennheiser Products

3. Sennheiser Sound Control Protocol (SSC)

All product specific HTTPs methods, parameters and responses at a glance.

Sennheiser offers two different protocols that can be used depending on the

functional scope of the implemented device firmware and software supplied with

the product:

• SSCv2: New protocol with a high security standard for Sennheiser

devices that are delivered with a password.

• SSCv1: Old protocol with command and control functions without support

for networked audio streaming.

SSCv2

The newest Sennheiser 3rd party API protocol allows to configure and monitor devices using

REST API calls. The following Sennheiser devices are supported:

• TeamConnect Ceiling Medium

SSC

The older protocol allows to command and to control devices. This protocol does not support

the network audio streaming. The following Sennheiser devices are supported:

• SL Rack Receiver

• CHG 4N - network-enabled charger

• CHG 2N - 2 bay network charger

• Multi-channel receiver (SL MCR2 & MCR4)

• EW-DX EM 2 rack receiver (EW-DX EM 2)

• EW-DX EM 2 rack receiver Dante (EW-DX EM 2 Dante)

• EW-DX EM 4 rack receiver Dante (EW-DX EM 4 Dante)

• CHG70N - 2 bay network charger

• TeamConnect Ceiling 2 (TCC 2)

5

| 3 - Sennheiser Sound Control Protocol (SSC)

Related information

Sennheiser Sound Control Protocol v2 (SSCv2)

Sennheiser Sound Control Protocol v1

Sennheiser Sound Control Protocol v2 (SSCv2)

The newest Sennheiser 3rd party API protocol called SSCv2 allows to configure and monitor

the Sennheiser devices using REST API calls. Here you can find the introduction to the REST

protocol, how to enable 3rd party access and how to subscribe for device configuration

change.

Media Control Protocol

Document version: 0.1 01.03.2023

Sennheiser electronic GmbH & Co. KG Am Labor 1, 30900 Wedemark, Germany,

www.sennheiser.com

6

| 3 - Sennheiser Sound Control Protocol (SSC)

• Sennheiser Sound Control Protocol v2 (SSCv2)

• Media Control Protocol

• Table of Contents

• Introduction

• Terminology

• Protocol Basics

• HTTP(S)

• OpenAPI

• Messages

• Usage

• Enabling Third Party Access

• Authentication

• Connecting to a Device

• SSCv2 Specifications

• Case Sensitivity

• Default Returns

• JSON

• SSCv2 Subscriptions

• Subscription Message Format

• Starting a Subscription

• Getting Subscription Status

• Changing Subscribed Resources

• Changing the Full Set of Subscribed Resources

• Adding Resources to Subscriptions

• Removing Resources from Subscriptions

• Canceling a Subscription

• Subscribing to Multiple Addresses

• Error Handling

• Subscription Notification Syntax

7

| 3 - Sennheiser Sound Control Protocol (SSC)

This document introduces the Sennheiser Sound Control Protocol v2 (SSCv2) for Sennheiser

devices.

List of compatible devices:

• TeamConnect Ceiling Mic M

The Sennheiser Sound Control Protocol v2 is a secure RESTful API via HTTPS transport,

suitable for command, control and monitoring of networked audio devices. It uses JavaScript

Object Notation (JSON) for data serialization.

Terminology

SSCv2 server: Sennheiser device or application that receives and replies to SSCv2 messages.

SSCv2 client: third party device, application or person that sends SSCv2 messages to a

Sennheiser device.

8

| 3 - Sennheiser Sound Control Protocol (SSC)

Protocol Basics

This section describes the key elements of the SSCv2 protocol.

HTTP(S)

The following optional parts of HTTP(S) have been made mandatory or are recommended for

SSCv2:

• An SSCv2 server must implement HTTPS using HTTP/1.1

• An SSCv2 client should use persistent connections

9

| 3 - Sennheiser Sound Control Protocol (SSC)

OpenAPI

The SSCv2 definitions are provided as an OpenAPI specification for each Sennheiser device.

10

| 3 - Sennheiser Sound Control Protocol (SSC)

Messages

SSCv2 uses two modes of message exchange:

• Synchronous: The client sends a GET/PUT/POST/DELETE request and the server

immediately sends a response

• Asynchronous: The client subscribes to parameter changes and the server notifies

the client of parameter changes via a Server Sent Event (SSE). For more see SSCv2

Subscriptions.

11

| 3 - Sennheiser Sound Control Protocol (SSC)

Usage

This section describes how to use SSCv2.

Enabling Third Party Access

The Sennheiser device cannot be accessed via the API in factory default state. In order to

enable it:

• Connect the Sennheiser device to Sennheiser Control Cockpit.

• Go to the device page.

• Enable third party access and configure a third party password.

12

| 3 - Sennheiser Sound Control Protocol (SSC)

Authentication

It is mandatory to authenticate on the device with each request:

• Using HTTP basic authentication

• Username: api

• Password: configured using Sennheiser Control Cockpit

13

| 3 - Sennheiser Sound Control Protocol (SSC)

Connecting to a Device

Use the device IP address and the HTTPS port 443 to form the base URL for the connection

requests, e.g. "url: https://192.168.0.1:443".

14

| 3 - Sennheiser Sound Control Protocol (SSC)

SSCv2 Specifications

This section explains how HTTPS, JSON and SSE are used in the context of SSCv2.

Case sensitivity

• The path component of a URI must be case sensitive, as per RFC 3986, 6.2.2.1.

• The JSON payload must be interpreted by SSCv2 clients and SSCv2 servers as case

sensitive.

15

| 3 - Sennheiser Sound Control Protocol (SSC)

Default Returns

For some generic actions, mandatory HTTP status codes have been defined:

• When a client sends a request without being authenticated, the SSCv2 server replies

with 401 – "Unauthorized".

• When a client is authenticated but not authorized to access the resource, the SSCv2

server replies with 403 – "Forbidden".

• When a client is authorized and tries to access a resource that does not exist, the

SSCv2 server replies with 404 – "Not Found".

• When a client is authorized to access a resource but the HTTP request method is

not allowed by the SSCv2 server, the SSCv2 server replies with 405 – "Method not

allowed".

• When a client is authorized to access a resource but has a format error in its request,

the SSCv2 server replies with 400 – "Bad request".

• When a client is authorized to access a resource and the format is correct, but

the device cannot honor the request because of the internal device status, the

SSCv2 server replies with 409 – "Conflict". An example for this would be trying to

configure an IP address while the device is using DHCP, without also switching to

fixed addresses.

• When a client is authorized to access a resource and the format is correct, but there

are semantic/logical errors, the SSCv2 server replies with 422 – "Unprocessable

Entity". An example for a logical error would be using a subscription ID which does

not exist.

16

| 3 - Sennheiser Sound Control Protocol (SSC)

JSON

The following optional parts of JSON have been made mandatory for SSCv2:

• An SSCv2 server returns all text-based entities as a JSON object

17

| 3 - Sennheiser Sound Control Protocol (SSC)

SSCv2 Subscriptions

The SSCv2 API allows third party clients to subscribe to parameter changes. In response,

the server notifies the client of parameter changes via a Server Sent Event (SSE), formatting

messages according to the EventSource specification.

Subscription Message Format

For the EventSource specification only the parameters data and event are used. For the

parameter event only the following events are used:

• open , at the start of a subscription.

• message , when sending resource updates. As it is there by default, it MAY be

omitted in the event stream.

• close , when the SSCv2 client actively closes the subscription by sending DELETE

to /api/ssc/state/subscriptions/{sessionUUID} or when the subscription is

closed because the device is initiating a reboot.

A full EventSource-compatible update looks as follows:

event: <eventtype>\ndata: <updatejson>\n\n

where \n denotes the ASCII character for a linefeed.

18

| 3 - Sennheiser Sound Control Protocol (SSC)

Starting a Subscription

To initiate a subscription:

• The subscription is initialized by the SSCv2 client by issuing a GET request to /api/

ssc/state/subscriptions

• The SSCv2 server replies to the subscription request immediately either by

acknowledging the request, or by sending an error reply.

• The SSCv2 server sends an initial message to the client, containing:

• The Content-Type set to text/event-stream

• The Content-Location containing the path /api/ssc/state/

subscriptions/{sessionUUID}

• where SessionUUID is the ID generated for the subscription and

associated with the HTTP session. It can be used later to modify the

subscription.

• The initial open event, with the following data:

{

 "path": "/api/ssc/state/subscriptions/{sessionUUID}",

 "sessionUUID": "{sessionUUID}"

}

• The SSCv2 subscription is initially empty without any subscribed resources, and the

SSCv2 client must subscribe to resources using /api/ssc/state/subscriptions/

{sessionUUID} and /api/ssc/state/subscriptions/{sessionUUID}/add ,

respectively.

• An SSCv2 client must not send further regular HTTP requests to the SSCv2 server via

the connection used to request the subscription. After the initial subscription request

the connection can only be used to receive events from the SSCv2 server.

The resource for starting subscription is provided in the OpenAPI snippet below.

/api/ssc/state/subscriptions:

 get:

 summary: Start a subscription

 description: An SSCv2 Command to start a subscription

 responses:

 '200':

 description: Successful request

 headers:

 Content-Location:

 description: Location of the resource to be used to change the subscribed

 resources

 schema:

 type: string

 content:

 text/event-stream:

 schema:

 type: string

 description: The initial subscription stream.

 '403':

 description: User is not authorized to subscribe to resources

19

| 3 - Sennheiser Sound Control Protocol (SSC)

 '500':

 description: SSCv2 Server encountered internal error

20

| 3 - Sennheiser Sound Control Protocol (SSC)

Getting Subscription Status

The SSCv2 client can request the subscription status:

• Send a GET request to /api/ssc/state/subscriptions/{sessionUUID} using the

previously received sessionUUID .

• If the sessionUUID is incorrect, an error is returned.

OpenAPI snippet:

/api/ssc/state/subscriptions/{sessionUUID}:

 get:

 summary: Get the subscription list

 description: An SSCv2 Command to retrieve the list of subscriptions associated with

 the sessionUUID

 parameters:

 - in: path

 name: sessionUUID

 schema:

 type: string

 required: true

 responses:

 '200':

 description: Successful request

 content:

 application/json:

 schema:

 type: array

 items:

 type: string

 example: /api/device/site

 '403':

 description: User is not allowed to get subscription list for this sessionUUID

 '422':

 description: sessionUUID did not exist

 '500':

 description: SSCv2 Server encountered internal error

21

| 3 - Sennheiser Sound Control Protocol (SSC)

Changing Subscribed Resources

It is possible to either change the full set of resources of a subscription, or to add/remove

resources from the currently subscribed set.

The SSCv2 client can only subscribe to resources specifying a GET request, otherwise an

error is returned.

Changing the Full Set of Subscribed Resources

The SSCv2 client can change the full set of subscribed resources:

• Send a PUT request to /api/ssc/state/subscriptions/{sessionUUID} using the

previously received sessionUUID .

• The SSCv2 client must send a complete list of the resources to which it wants

to subscribe.

• After accepting and setting up the subscription, the SSCv2 server sends the current

state of each subscribed resource which is new or has been removed.

OpenAPI snippet

/api/ssc/state/subscriptions/{sessionUUID}:

 put:

 summary: Set/change the subscription list

 description: An SSCv2 Command to set/change the list of subscriptions associated

 with the sessionUUID

 parameters:

 - in: path

 name: sessionUUID

 schema:

 type: string

 required: true

 requestBody:

 content:

 application/json:

 schema:

 type: array

 items:

 type: string

 example: /api/device/site

 responses:

 '200':

 description: Successful request

 '400':

 description: The request for subscription was invalid

 content:

 application/json:

 schema:

 type: object

 properties:

 path:

 type: string

 example: /api/ssc/version

 error:

 type: integer

22

| 3 - Sennheiser Sound Control Protocol (SSC)

 example: 403

 '403':

 description: User is not allowed to change subscription list for this

 sessionUUID

 '422':

 description: sessionUUID did not exist

 '500':

 description: SSCv2 Server encountered internal error

23

| 3 - Sennheiser Sound Control Protocol (SSC)

Adding Resources to Subscriptions

The SSCv2 client can add one or more resources to an existing list of subscribed resources:

• Send a PUT request to /api/ssc/state/subscriptions/{sessionUUID}/add using

the previously received sessionUUID .

• The SSCv2 server adds the resources to the list of subscribed resources for the

existing subscription.

• If even one resource in the set of resources that the SSCv2 client wants to add is

not allowed, the SSCv2 server refuses the entire request and the current set of

subscribed resources for the subscription is not changed.

• The SSCv2 server treats an empty resource list as no action and replies with 200 –

OK.

• The SSCv2 server reports the initial values of the newly added resources using the

existing subscription.

OpenAPI snippet

/api/ssc/state/subscriptions/{sessionUUID}/add:

 put:

 summary: Add resource(s) the subscription list

 description: An SSCv2 Command to add a set of resources to the list of subscriptions

 associated with the sessionUUID

 parameters:

 - in: path

 name: sessionUUID

 schema:

 type: string

 required: true

 requestBody:

 content:

 application/json:

 schema:

 type: array

 items:

 type: string

 example: /api/device/site

 responses:

 '200':

 description: Successful request

 '400':

 description: The request to add to the subscription was invalid

 content:

 application/json:

 schema:

 type: object

 properties:

 path:

 type: string

 example: /api/ssc/version

 error:

 type: integer

 example: 403

 '403':

 description: User is not allowed to add to the subscription list for this

 sessionUUID

 '422':

24

| 3 - Sennheiser Sound Control Protocol (SSC)

 description: sessionUUID did not exist

 '500':

 description: SSCv2 Server encountered internal error

25

| 3 - Sennheiser Sound Control Protocol (SSC)

Removing Resources from Subscriptions

The SSCv2 client can remove one or more resources from an existing list of subscribed

resources:

• Send a PUT request to /api/ssc/state/subscriptions/{sessionUUID}/remove

using the previously received sessionUUID .

• The SSCv2 server removes the resources from the list of subscribed resources for the

existing subscription.

• If even one resource in the set of resources that the SSCv2 client wants to remove

is not allowed, the SSCv2 server refuses the entire request and the current set of

subscribed resources for the subscription is not changed.

• The SSCv2 server treats an empty resource list as no action and replies with 200 –

OK.

• The SSCv2 server does not terminate the subscription if the list of subscribed

resources is empty after the removal of resources.

• For every removed resource the SSCv2 server sends an update, using the resource as

the key and the JSON keyword "null" as the value.

OpenAPI snippet

/api/ssc/state/subscriptions/{sessionUUID}/remove:

 put:

 summary: Remove resource(s) from the subscription list

 description: An SSCv2 Command to remove a set of resources from the list of

 subscriptions associated with the sessionUUID

 parameters:

 - in: path

 name: sessionUUID

 schema:

 type: string

 required: true

 requestBody:

 content:

 application/json:

 schema:

 type: array

 items:

 type: string

 example: /api/device/site

 responses:

 '200':

 description: Successful request

 '400':

 description: The request to remove to the subscription was invalid

 content:

 application/json:

 schema:

 type: object

 properties:

 path:

 type: string

 example: /api/ssc/version

 error:

 type: integer

 example: 404

26

| 3 - Sennheiser Sound Control Protocol (SSC)

 '403':

 description: User is not allowed to remove from the subscription list for this

 sessionUUID

 '422':

 description: sessionUUID did not exist

 '500':

 description: SSCv2 Server encountered internal error

27

| 3 - Sennheiser Sound Control Protocol (SSC)

Canceling a Subscription

An SSCv2 client can end a subscription either implicitly or explicitly.

• To end a subscription implicitly, the SSCv2 client simply closes the connection that

receives the subscription data.

• To end a subscription explicitly, an SSCv2 client sends a DELETE request to the

resource /api/ssc/state/subscriptions/{sessionUUID} .

• The SSCv2 server sends a close event to the subscription before it closes

the connection.

• The data sent in the close event is the same as in the open event.

The SSCv2 server terminates a subscription in the following cases:

• The subscribed client cancels the subscription explicitly.

• The SSCv2 client closes the connection.

• The transport layer of the SSCv2 connection signals a fatal communication error.

OpenAPI snippet

/api/ssc/state/subscriptions/{sessionUUID}:

 delete:

 summary: End an existing subscription

 description: An SSCv2 Command to end the subscription associated with the

 sessionUUID

 parameters:

 - in: path

 name: sessionUUID

 schema:

 type: string

 required: true

 responses:

 '200':

 description: Successful request

 '403':

 description: User is not allowed to end subscription for this sessionUUID

 '422':

 description: sessionUUID did not exist

 '500':

 description: SSCv2 Server encountered internal error

28

| 3 - Sennheiser Sound Control Protocol (SSC)

Subscribing to Multiple Addresses

The SSCv2 client may request to subscribe to multiple resources in a single request.

• If the SSCv2 server is not able to successfully subscribe to even one of the resources,

it sends an error and refuses all resources.

• If there are already subscribed resources present, the previous state of the

subscription remains unchanged.

29

| 3 - Sennheiser Sound Control Protocol (SSC)

Error Handling

When the SSCv2 server refuses a request for a subscription or a set of subscriptions, it

returns an object containing the first resource which was not subscribable and the reason for

the error.

• 403 if subscribing to the resource is not allowed.

• 404 if the resource does not exist.

30

| 3 - Sennheiser Sound Control Protocol (SSC)

Subscription Notification Syntax

A subscription notification constitutes Server Sent Event (SSE) data in the form of a JSON

object, using the resource that triggered the notification as the key and the entities of the

resource wrapped in a JSON object as the value.

• An SSCv2 server may combine notifications for multiple resources in one JSON

object, if the updates occur at the same time.

• Since a newly created subscription of multiple addresses must report the values of

the resources, this may be combined into a larger JSON object.

• If this combination of the different resources is not supported, all notifications must

be sent in the stream as individual JSON objects.

The following example shows a stream containing a notification after an initial subscription

and a later notification of a name change:

{

 "/api/device/site":

 {

 "name": "MyDevice",

 "location": "Chemistry Building 5, Room 15",

 "site": "Left side near the big pillar"

 }

}

{

 "/api/device/site":

 {

 "name": "MyRenamedDevice",

 "location": "Chemistry Building 5, Room 15",

 "site": "Left side near the big pillar"

 }

}

The address /api/device/site was subscribed, the initial values were reported. After

some time the name was changed and the resulting update was sent as a second JSON

object.

31

| 3 - Sennheiser Sound Control Protocol (SSC)

Sennheiser Sound Control Protocol v1

This protocol allows to command and to control the Sennheiser devices supporting the

older SSC v1 version.

Below you will find a list of Sennheiser products that support the SSCv1 protocol. Click on the

provided link to display the appropriate protocol for the desired Sennheiser product.

Note that the protocol is intended for command and control. Network audio

streaming is entirely out of its scope.

SpeechLine Digital Wireless

 SSC Protocol for SpeechLine Digital Wireless devices:

• SL Rack Receiver

• CHG 4N - network-enabled charger

• CHG 2N - 2 bay network charger

• Multi-channel receiver (SL MCR2 & MCR4)

Evolution Wireless Digital

 SSC Protocol for Evolution Wireless Digital devices:

• EW-DX EM 2 rack receiver (EW-DX EM 2)

• EW-DX EM 2 rack receiver Dante (EW-DX EM 2 Dante)

• EW-DX EM 4 rack receiver Dante (EW-DX EM 4 Dante)

• CHG70N - 2 bay network charger

TeamConnect

 SSC Protocol for TeamConnect devices:

• TeamConnect Ceiling 2 (TCC 2)

32

https://www.sennheiser.com/globalassets/digizuite/41930-en-ti_1094_v4.3_sennheiser_sound_control_protocol_sl_dw_en.pdf
https://www.sennheiser.com/globalassets/digizuite/41930-en-ti_1094_v4.3_sennheiser_sound_control_protocol_sl_dw_en.pdf
https://www.sennheiser.com/globalassets/digizuite/41940-en-ti_1245_v1.8.0_sennheiser_sound_control_protocol_tcc2_en.pdf
https://www.sennheiser.com/globalassets/digizuite/41940-en-ti_1245_v1.8.0_sennheiser_sound_control_protocol_tcc2_en.pdf

3rd Party API for Sennheiser Products

4. Open API

Here you can find all product specific HTTPs methods, parameters and responses at a

glance.

Currently the REST API is supported by:

• TeamConnect Bar S and M

• Team Connect Ceiling Mic Medium

• MobileConnect

Any future supported Sennheiser products will be added to this page. Please

note that Sennheiser products that are not found on this page, support the

Sennheiser Sound Control Protocol v1, and you can find their specifications on

their respective here.

TeamConnect Bar

Known Issues

TC Bar Open API 1.11

TeamConnect Ceiling Medium

TCC M Open API 1.7

Subscription for real-time updates

MobileConnect

MobileConnect

Evolution Wireless Digital (EW-DX)

EW-DX Open API 1.7

All HTTPs methods, parameters and responses for EW-DX devices at a glance.

Supported EW-DX devices

• EW-DX EM2

• EW-DX EM2 Dante

• EW-DX EM4 Dante

33

https://docs.sennheiser-connect.com/mobile-connect-api/index.html

| 4 - Open API

TeamConnect Bar (TC Bar S/M)

Known Issues

Here you can find all known issues regarding the methods, parameters and responses for

TC Bar S/M.

General

Please note the following information:

• There is no PUT method for the request /api/interfaces/network/

dante . You can find the GET method under Device.

• The PUT method for the request /api/video/output/hdmi (listed

under Video) is out of function.

• The PUT request for enabling the camera /api/video/input/

internalCamera/enable is deprecated.

• There is no PUT method available for the request /api/video/input/

internalCamera/videoParameters .

Activating Bluetooth®

To activate the Bluetooth® function via the PUT request /api/interfaces/

bluetooth , please only send the pairing request after 10 seconds. Requesting

both values at the same time does not work.

Send the first request with:

{

 "enabled": true

 }

After 10 sec send the second request:

{

 "pairing": false

 }

34

| 4 - Open API

TC Bar Open API 1.11

All TeamConnect Bar HTTPs methods, parameters and responses at a glance.

35

| 4 - Open API

TeamConnect Ceiling Medium (TCC M)

TCC M Open API 1.7

All TeamConnect Ceiling Medium HTTPs methods, parameters and responses at a glance.

36

| 4 - Open API

Subscription for real-time updates

This script sets up a subscription to receive real-time updates from a Sennheiser device.

The

script uses HTTP Basic Authentication to authenticate with the device and requests an event stream from the device's API.

Once the stream is established, it adds a subscription for a specific request and listens for incoming data.
The incoming data is printed to the console as a string representation.
If the stream fails to establish the reason for the failure is printed to the console.

To set up a subscription for real-time updates:

Replace the ip  variable with the IP address of your Sennheiser device.
Replace the request  variable with the API request you want to subscribe to.
Replace the password  variable with the password for your Sennheiser Smart Control device.

Sennheiser  electronic GmbH & Co. KG
Version:  1.0.0
Date:  2023-09-18
"""

 Import necessary libraries
from  requests.auth import HTTPBasicAuth
import  requests

 Set up variables for authentication and API requests
ip  = '192.168.42.100'  # Replace with the IP address of your Sennheiser device
request  = '/api/audio/inputs/microphone/beam/direction'

 Replace with the API request you want to subscribe to
password  = 'the_future_of_audio'  # Replace with the password for your Sennheiser Smart Control device

 Set up HTTP Basic Authentication and request an event stream from the device's API
auth  = HTTPBasicAuth(
'api',

password

)

stream  = requests.get(
f'https://{ip}:443/api/ssc/state/subscriptions',

auth=auth,  stream=True,
headers={'Accept':  'text/event-stream'},
verify=False

)

 If the stream is established, add a subscription for the specified request and listen for incoming data
if  stream.status_code == 200:
stream.uuid  = stream.headers['Content-Location'].split('/')[-1]
requests.put(

f'https://{ip}:443/api/ssc/state/subscriptions/{stream.uuid}/add',

json=[request],  auth=auth,
verify=False

37

| 4 - Open API

)

while  True:
data  = stream.raw._fp.fp.read1(1024)
data  = data.decode('utf-8')
print(repr(data))

 If the stream fails to establish, print the reason for the failure to the console

else:

print(stream.reason)

38

| 4 - Open API

MobileConnect

39

 

	3rd Party API for Sennheiser Products
	Contents
	1. Preface
	PDF export of the original HTML instructions

	2. Release Notes
	Previous Releases

	3. Sennheiser Sound Control Protocol
	SSCv2
	SSC
	Sennheiser Sound Control Protocol v2 (SSCv2)
	Sennheiser Sound Control Protocol v1
	SpeechLine Digital Wireless
	Evolution Wireless Digital
	TeamConnect

	4. Open API
	Evolution Wireless Digital (EW-DX)
	EW-DX Open API 1.7

	TeamConnect Bar (TC Bar S/M)
	Known Issues
	TC Bar Open API 1.11

	TeamConnect Ceiling Medium (TCC M)
	TCC M Open API 1.7
	Subscription for real-time updates

	MobileConnect

